ChemE contents
Attachments
History
Blame
View Source
Changelog
Documentation
Toggle dark mode
Login
Home
A - Z
Page Index
Utilidades industriais
Equipamentos
Caldeiras aquatubulares
Caldeiras de biomassa
Cilindro Yankee
Coletores solares
Coletores solares 2
Compressores pistão
Condensadores
Evaporadores
Fornalhas
Painéis fotovoltaicos
Painéis solares térmicos
Permutadores de calor de carcaça e tubo
Permutadores de calor de placas
Secadores
Torres de arrefecimento
Turbinas a gás
Turbinas hidraúlicas
An Otter Wiki
Utilidades industriais
Equipamentos
input
b2fc2a
Commit
b2fc2a
2025-03-13 11:04:06
João Lopes
: Added attachment(s): input.md.
Utilidades industriais/Equipamentos/input.md
..
@@ 1,194 1,323 @@
-
> ***Permutador*** ***de*** ***calor*** ***de*** ***placas***
-
> *Guilherme* *Pereira,* *António*
-
> *Murta*<img src="./puuuzrhw.png"
-
> style="width:1.32418in;height:0.60625in" /><img src="./cievhrj3.png"
-
> style="width:3.34125in;height:2.49653in" />
+
IIP Homework n°1
-
*Integração* *e* *Intensificação* *de* *Processos* *27* *de* *fevereiro*
-
*de* *2024*
-
-
> **Tarefa** **1** **–** **Permutadores** **de** **calor** **de**
-
> **placas**
-
>
-
> **<u>Introdução:</u>**
-
>
-
> Os permutadores são aparelhos industriais utilizados para transferir
-
> calor entre dois fluidos diferentesa temperaturasdistintas. A
-
> maioriadestesdispositivosé montado em processos de fabrico, de maneira
-
> a aquecer ou arrefecer os fluidos que circulam nas suas correntes.
-
>
-
> Existem diversostipos de permutadores, sendo que os mais consensuais
-
> são os de double pipe, carcaça e tubos e os de placas. A diferença
-
> entre eles prevalece na sua forma e funcionamento, enquanto que os
-
> permutadores de calor double pipe são compostos por dois tubos
-
> concêntricosem que um dos fluidos se faz escoar pelo tubo interno e o
-
> outro se escoa pelo tubo que o rodeia, os de carcaça e tubos são
-
> compostos por uma carcaça que envolve inúmeros tubos, onde um dos
-
> fluidos se faz escoar pelo interior dos tubos e o outro entre os tubos
-
> e a carcaça.
-
>
-
> Os permutadores de placas (PHE, plate heat exchanger) são equipamentos
-
> que, como o nome indica, são constituídospor placas enrugadas onde os
-
> diferentesfluidoscirculam e é nestas onde ocorre a transferênciade
-
> calor. A transferênciade calor é possível porque o material de que as
-
> placas são feitas tem uma elevada condutividadetérmica. Habitualmente,
-
> são constituídos por placas de aço inoxidável, titânio ou outro tipo
-
> de metais que sejam resistentes à corrosão. \[1\]
-
>
-
> **Figura** **1-** Esquema representativo do funcionamento de
-
> permutadores de calor de placas. \[2\]
-
>
-
> De acordo com o que está retratado na Figura 1, é possível perceber
-
> que as placas onde circulam os dois fluidos, quente e frio, estão
-
> alternadas, potenciando a transferência de calor.
-
>
-
> Há vários tipos de permutadores de calor de placas, entre eles: \[3\]
-
> o PHE com junta;
-
>
-
> o PHE com pratos semi-soldados;
-
>
-
> o PHE com pratos totalmente soldados o PHE com pratos de grafite.
+
> **Homework** **n°1** **:** **HydraulicTurbines** *Letourneau* *Lyana*
+
> */* *2021257413*
>
+
> *Itegration* *and* *Intensification* *of* *Process*
+
+
Introduction
+
+
I will complete the page on hydraulic turbines, I will refresh or
+
complete the data on the page.
+
+
And focusing my research and additions on tidal turbines. And finally I
+
will also add a section on hydraulics inPortugal.
+
+
HydraulicsTurbines
+
+
**Hydroelectricity** **in** **the** **history** **and** **in** **the**
+
**world**
+
+
The use of hydraulic turbines began a long time before hydroelectricity:
+
the first watermills appeared in the 1st century, between Greece and
+
Turkey, before reaching the Roman and ChineseEmpires in the 3rd century.
+
Ahydraulic turbine is a rotating machine that produces mechanical energy
+
from moving water, in lakes, rivers or with the tide. So it is a machine
+
that converts kinetic energy and potential energy of water into
+
mechanical work. It is the essential component of hydroelectric power
+
stations intended to produce electricity from a flow of water.
+
Subsequently, its use was adapted to directly drive machines in
+
factories until they were practically used only to drive electric
+
generators.
+
+
Hydroelectric energy is one of the oldest sources of electricity
+
production, and therefore is very technologically developed. It is today
+
by farthe leadingrenewable electrical energy, producing nearly
+
83%ofrenewable electricity and 16% of global energy in the world.
+
Hydroelectricity is not the “out of date” science that we imagine.
+
Today, hydraulic machines are high-tech objects that must meet
+
increasingly stringent performance constraints. \[1\]
+
> 1
-
>
-
> ***Permutador*** ***de*** ***calor*** ***de*** ***placas***
-
> *Guilherme* *Pereira,* *António*
-
> *Murta*<img src="./0agirgzl.png"
-
> style="width:1.32418in;height:0.60625in" />
-
*Integração* *e* *Intensificação* *de* *Processos* *27* *de* *fevereiro*
-
*de* *2024*
+
<img src="./daetkwsb.png"
+
style="width:4.11986in;height:2.47361in" />IIP Homework n°1
-
> **<u>Vantagens e Desvantagens:</u>**
-
>
-
> Os PHE devido à sua elevada eficiência térmica apresentam várias
-
> vantagens relativamenteaosoutros tipos de permutadoresde calor, no
-
> entanto tambémapresentam algumas desvantagens, nomeadamente no que
-
> toca ao uso intensivo nas juntas de vedação.
-
>
-
> <u>Vantagens:</u>
-
>
-
> • A sua maior vantagemé a forma como podem ser montados, desmontadose
-
> armazenados facilmente, uma vez que são placas e tubos que se
-
> compactam. Isto permite uma limpeza e manutenção rápida e eficaz.
-
>
-
> • Para coeficientes de transferência de calor elevados, este tipo de
-
> permutadores tem um tamanho reduzido quando comparado com outros. Para
-
> além disso, é menos pesado e volumoso que um permutador de carcaça e
-
> tubos, o que permite um custo de transporte mais acessível e barato.
-
>
-
> • O coeficiente de transferência entre as placas é tão elevado que
-
> permite obter diferenças de temperaturamínimas(até 1ºC) entre os
-
> fluidos em estudo. Para ajudar a este facto, os fluidos são colocados
-
> em contracorrente o que resulta numa recuperação de mais de 90% do
-
> calor disponível. \[3\]
-
>
-
> • Não existe a possibilidade de contaminação de fluidos, uma vez que
-
> cada fluido está confinado a canais entre placas seladas.
-
>
-
> • Outra grande mais valia é o facto de se poder combinar facilmente
-
> diversos tipos de placas e diferentesfluidos, de forma a otimizar as
-
> condições de operação do processo e tamanho da planta fabril.
-
>
-
> <u>Desvantagens:</u>
-
>
-
> • Este tipo de permutador de calor não pode operar a pressões
-
> superiores a 1,5MPa, visto que provoca fugas nos vedantes. \[4\]
-
>
-
> • Para temperaturas acima dos 150ºC no fluido não se pode utilizar os
-
> vedantes tradicionais, pois estes corroem e perdem a sua função
-
> elástica de vedante.
-
>
-
> • É possível que a demasiada fricção entre placas crie fugas e se
-
> perca fluido, apesar de não acontecer por norma.
-
>
-
> • A grande desvantagem dos permutadores de calor de placas implica o
-
> dimensionamento destes equipamentos, uma vez que para os restantes
-
> existem na literatura modelos genéricos de fácil compreensão, para
-
> estes equipamentos cada fabricante tem os seus modelos específicos,
-
> dificultando assim, o projeto da máquina e, por consequência do
-
> processo.
-
>
-
> **<u>Aplicações:</u>**
-
>
-
> • Indústria alimentar – Pasteurização, esterilização e aquecimento
-
> geral de alimentos • Marinha – Arrefecimento de motores e/ou sistemas
-
> hidráulicos
-
>
-
> • Sistemas de Energia Renovável – Aquecimento geotérmico e sistemas
-
> térmicos solares • Indústria farmacêutica
-
>
-
> • Sistemas AVAC – aquecimento e ar condicionado
+
> *Figure* *1:* *Global* *Energy* *Mix* *in* *2019*
+
> [*<u>link</u>*](https://powertechresearch.com/competing-during-transformation-how-private-equity-firms-are-utilizing-market-research-in-energy-sector/)
+
+
**Constitution** **and** **Operating** **Principles**
+
+
The water present in a tank located at a higher level (with more energy)
+
is circulated to a lower level (with less energy) passing through a set
+
of curved blades, nozzles or injectors that transform this energy from
+
the water into movement of a rotor,removingenergyand speed from the
+
water. These blades can be staticor fixed on therotor, both being
+
adjustable so that the flowand power generated can be controlled,
+
according to the rotation speed. For its part, the rotoris supported
+
axially by thrust and counter thrust bearings and radially by guide
+
bearings.
+
+
The pipe normally has a final diameter greater than the initial one, in
+
order to promote the exit of water with a lower velocity \[2\].
+
+
To better understand how a turbine works, consider a Francis turbine,
+
illustrated in this video:
+
+
[<u>video</u>](https://www.youtube.com/watch?v=Q0F-9HciA-A)
+
+
**Types** **of** **turbines**
+
+
Different types of turbines are developed to extract mechanical energy
+
from hydraulic energy to generate electricity. They are severalwaysto
+
classify turbines, but a common way isto classify with the mode ofenergy
+
exchange between the water and the turbines. \[1\]
+
+
*Impulse* *Turbines*
+
+
If the turbine wheel is driven by the kinetic energy of the fluid that
+
strikes the turbine blades through the nozzle or otherwise, the turbine
+
is known as an impulse turbine.
+
+
> These types of turbines are usually suitable for high head and low
+
> flow rates.
+
+
*Reaction* *Turbines*
+
+
If the sum of potential and kinetic energy of water which are due to the
+
pressure and velocity, respectively cause the turbine blades to rotate,
+
the turbine is classified as a reaction turbine. In these types of
+
turbines, all the turbine is immersed in water and changes in water
+
pressure with the kinetic energy of the water cause power exchange.
+
+
> Those turbines are usually at lower heads and higher flow rates than
+
> impulse turbines.
>
> 2
-
>
-
> ***Permutador*** ***de*** ***calor*** ***de*** ***placas***
-
> *Guilherme* *Pereira,* *António*
-
> *Murta*<img src="./2cds4fvj.png"
-
> style="width:1.32418in;height:0.60625in" />
-
*Integração* *e* *Intensificação* *de* *Processos* *27* *de* *fevereiro*
-
*de* *2024*
+
<img src="./bv1mzvrb.png"
+
style="width:1.53153in;height:1.30417in" /><img src="./p42poq4i.png"
+
style="width:1.63125in;height:1.61736in" /><img src="./sb3nj3cs.png"
+
style="width:1.42639in;height:1.42778in" /><img src="./kmnbgey1.png"
+
style="width:1.80069in;height:1.81069in" /><img src="./vmu4ssqb.png"
+
style="width:1.75333in;height:1.21667in" /><img src="./xxgyca5s.png"
+
style="width:1.49653in;height:1.5875in" />IIP Homework n°1
-
> **<u>Conceitos térmicos:</u>**
-
>
-
> A par dos outros tipos de permutadores de calor a transferência de
-
> calor dá-se da mesma maneira, ou seja, por convecção onde a energia é
-
> transferida do fluido mais quente para o mais frio.
-
>
-
> Para estimar a energia transferida é utilizado o balanço energético
-
> global ao permutador, dado por:
-
>
-
> 𝑄 = 𝑈𝐴(∆𝑇)𝑚𝑙 (1)
+
> 3
+
+
<img src="./kkknlexu.png"
+
style="width:2.11458in;height:1.73958in" />IIP Homework
+
n°1<img src="./foo0ysbp.png"
+
style="width:4.84055in;height:3.69444in" /><img src="./3jbcgoym.png"
+
style="width:1.15753in;height:0.64583in" />
+
+
> *Table* *1* *:* *Types* *of* *turbine*
+
+
**Choice** **of** **Turbine** **Type**
+
+
Each type of turbine has its advantages depending on the operating
+
conditions, and the main objective is always to use the equipment that
+
presents the best efficiency for the place where it is installed.
+
Furthermore, the choice of turbine type is also influenced by the
+
turbine speed, that is, by the number of revolutions per minute of the
+
generator driven by theturbine.It isalso worthnotingthat theturbines can
+
be mountedin different positions,with theaxisvertical, horizontal or
+
even inclined to the vertical in order to satisfy the requirements of
+
generated power, water level and space limitations.
+
+
> *Figure* *2* *:* *Turbine* *application* *chart*
+
> [*<u>link</u>*](https://en.wikipedia.org/wiki/Water_turbine)
+
+
The specific speed of a turbine is given by the manufacturers, and
+
refers to the point of maximum efficiency, it is the best parameter to
+
choose a turbine when conditions of flow and head are established. This
+
allows accurate calculations of turbine performance for a range of head
+
and flow rates. It can be defined as the speed of an ideal similar
+
turbine that would produce one unit of power for one unit of head.
+
+
> 4
+
+
IIP Homework n°1 with :
+
+
Ω: angular velocity (rad/s) P: power (W)
+
+
The efficiency of a turbine is given by the ratio between the mechanical
+
power provided by the turbine and the existing power in the fluid,
+
provided by the hydraulic energy, depending on several variables:
+
+
> • Flow
>
-
> onde U é o coeficiente global de transferência de calor, Aé a área de
-
> transferência de calor e (∆𝑇)𝑚𝑙 a média logarítmica da diferença de
-
> temperaturas.
+
> • Existing losses • Turbine power • Manufacturer • Mounting shaft •
+
> Among others
+
+
However, hydraulic and mechanical losses are the main causes for the low
+
efficiencies in these equipment, and the efficiency of each equipment
+
must be maximized according to the conditions in which it will operate
+
(flow and losses). The typical efficiencies at which a turbine operates
+
vary between 80% and 95%, depending on the flow rate as you can see on
+
graphs identical to the one shown in Figure 2 \[3\].
+
+
**Advantages** **of** **Using** **Hydraulic** **Energy**
+
+
> • Hydraulic energy, a renewable energy source, is a “clean” energy,
+
> because it does not pollute the air and water like power plants that
+
> use fossil fuels as a source of energy;
>
-
> Outra equação importante é a que nos permite calcular a quantidade de
-
> calor transferida entre os dois fluidos, que é dada por:
+
> • Hydraulic energy is available when it is needed, and engineers can
+
> control water flows through turbines to produce electricity;
>
-
> 𝑄 = 𝑚𝑐𝑝∆𝑇 (2)
+
> • Hydraulic power stations create large reservoirs (dams) that
+
> contribute to the supply of water for public access and flood control;
>
-
> onde 𝑚 é o caudal mássico, 𝑐𝑝 o calor específico e ∆𝑇 a variação da
-
> temperatura do fluido.
+
> • Energy production involves low costs;
>
-
> Por fim para determinaro coeficienteglobalde transferênciade calor é
-
> utilizada equação dada por:
+
> • They work for decades with little maintenance, not requiring much
+
> investment to be maintained \[4\].
+
+
**Disadvantages** **of** **Using** **Hydraulic** **Energy**
+
+
> • Hydraulic power stations can be affected in times of drought and
+
> cannot produce electricity.
>
-
> 1 1 𝑟 ln(𝑟𝑖) 𝑟
+
> • The new hydraulic power stations impact the local environment,
+
> destroying ecosystems.
>
-
> 𝑈 ℎ0 𝑘 𝑟×ℎ𝑖
+
> • Fish populations can be affected, as they can no longer migrate
+
> upstream to spawn, or downstream to go to the ocean \[4\].
-
\(3\)
+
**Tidal** **Turbines**
-
> onde ℎ0 e ℎ𝑖 são os coeficientes de transferência de calor por
-
> convecção dos dois fluidos, 𝑟 e 𝑟 são os raios que definem a espessura
-
> da placa e 𝑘 é a condutividade térmica. \[5\]
-
>
-
> **<u>Referências Bibliográficas:</u>**
+
From the end of the 19th century, some scientists had the idea of using
+
the mechanical energy of ocean currents, but it is only since the
+
beginning of the 21st century that this source of energy has begun to be
+
studied more seriously: And tidal turbines were born.
-
\[1\] – Meirinho Guerreiro, Paulo., *Avaliação* *do* *desempenho* *de*
-
*permutadores* *de* *calor* *de* *placas* *nos* *laboratóriosda*
-
*ARSOPI-THERMAL.* *Dissertação* *de* *Mestrado,*Universidadedo Porto,
-
2017
+
> 5
-
> \[2\] – Vapor para La Industria., *Permutadores* *de* *calor* *de*
-
> *placas:* *Quais* *são* *os* *seus* *tipos* *e* *funcionalidades?*
-
> \[online\]
-
>
-
> Disponível
-
> em[:<u>https://vaporparalaindustria.com/pt/intercambiadores-de-calor-de-placas-cuales-son-sus-tipos-y-funcionalidades/</u>](https://vaporparalaindustria.com/pt/intercambiadores-de-calor-de-placas-cuales-son-sus-tipos-y-funcionalidades/)
-
> (consultado em 27/02/2024)
+
IIP Homework n°1
+
+
Tidal energy is often compared to wind energy because of its appearance
+
and mode of operation: Concretely, a tidal turbine is composed with a
+
rotor, this is the rotating part, with a propeller made up of blades,
+
with a diameter between 10 and 20 m, all mounted on a shaft/stator, the
+
fixed part. \[5\]
+
+
The installation of a tidal turbine can be carried out:
+
+
> • On a mast or on a tripod which allows the tidal turbine to be placed
+
> on the seabed.
>
-
> \[3\] – Wang, L., B. Sundén, and R.M Manglik, *Plate* *Heat*
-
> *Exchangers:* *Design,* *Applications* *and* *performance*. WIT Press,
-
> 2007.
+
> • If the tidal turbine is placed facing an average sea current of 2.5
+
> m/s, i.e. 5 knots, because the tidal turbine operates at full power
+
> from 4 knots.
>
-
> \[4\] – Hesselgreaves, J.E., *Compact* *Heat* *Exchangers* *–*
-
> *Selection,* *Design* *and* *Operation*. Pergamon, 2001.
+
> • If the tidal turbine has a current interception surface of around
+
> 300 meters.
+
+
The operation of a tidal turbine can be broken down as follows:
+
+
> 1\. The sea current causes the rotation of the blades of the
+
> propeller, drives a turbine which generates a mechanical movement. The
+
> turbine in both directions of the sea current.
>
-
> \[5\] – Apontamentos de Fenómenos de Transferência II, docente Maria
-
> Graça Carvalho, 2020/2021.
+
> 2\. The rotation of the turbine drives an alternator, which will
+
> convert mechanical energy into electricity. 3. This electricity in the
+
> form of alternating current is then transported by cables to the
+
> surface.
>
-
> 3
+
> 4\. The current is then transformed by a converter to be sent to the
+
> electrical network.
+
+
||
+
||
+
||
+
||
+
||
+
||
+
+
> *Table* *2* *:* *Tidal* *turbines* *advantages* *and* *limits* *\[6\]*
+
+
**Au** **Portugal**
+
+
In 2019, Portugal had 7,193 MW of hydroelectric power plants, i.e. 2.9%
+
of European hydroelectric installed capacity and 0.5% of the world
+
total, 19.1% of the country's total electricity production. Its
+
production reached 10.6 TWh, or 1.6% of the European total, far behind
+
Norway (125.8 TWh), France (63.6 TWh) or Spain (26.4 TWh).
+
+
In March 2018, renewable energies produced 100% of electricity
+
consumption, including 55% for hydroelectricity in Portugal. \[7\]
+
+
> 6
+
+
<img src="./mzmejbn4.png"
+
style="width:4.11528in;height:3.59569in" />IIP Homework
+
n°1<img src="./jdmkn1bv.png"
+
style="width:2.44278in;height:1.82431in" /><img src="./fretrb0i.png"
+
style="width:1.94514in;height:1.91667in" />
+
+
> *Figure* *3* *:* *Portugal* *renewable* *electricity* *productio*[*n*
+
> *<u>link</u>*](https://en.wikipedia.org/wiki/Energy_in_Portugal)
+
+
Hydroelectric power stations in the country:
+
+
> • The Frades II (780 MW) and Foz Tua (270 MW) pumped storage power
+
> plants were comissioned in 2017. The Frade II project is one of the
+
> main pumped storage projects in Europe. This project was added to the
+
> cascade of hydroelectric works Cavado-Rabagao, in the north of the
+
> country.
+
>
+
> • The Alqueva dam in the Alentejo created the largest artificial lake
+
> in Western Europe and was one of the country's biggest investments.
+
> This hydroelectric plant, commissioned in 2004, had a power of 518 MW
+
> in 2013.
+
>
+
> • The Aguieira dam, on the Mondego river, was commissioned in 1981, it
+
> has an installed capacity of 270 MW with 3 groups of reversible
+
> Francis turbines.
+
>
+
> • The Douro hydroelectric development has 6 power stations with a
+
> total installed capacity of 3,161 MW. The most important is that of
+
> the Aldeadávila dam, inaugurated in 1963, it has a power of 1,140 MW.
+
> It is the most powerful power plant in Spain and Portugal.
+
>
+
> • On December 19, 2019, EDP and Engie sign launch the construction of
+
> six dams. These six dams, with a total capacity of 1.7 GW, are now in
+
> the Douro Valley. EDP therefore remains the leader in hydroelectric
+
> energy in Portugal with a market share of 65% in the country.
+
+
*Picture* *1* *:* *The* *Alqueva* *dam* *in* *the* *Alentejo* *(* *518*
+
*MW)* *Picture* *2* *:* *The* *Aldeadávila* *dam* *in* *the* *Duoro*
+
*(1* *140* *MW)*
+
+
> 7
+
+
IIP Homework n°1
+
+
**Some** **Hydraulic** **Turbine** **Manufacturers**
+
+
There are several manufacturers of hydraulic turbines, namely Voith,
+
Hacker, HISA, Watec-Hydro e.K., among many others that can be found on
+
the following website: [<u>Manufacturers of Hydraulic
+
Turbines</u>.](https://www.industrystock.es/es/empresas/Tecnolog%C3%ADas-de-accionamiento/Tecnolog%C3%ADas-de-turbinas/Turbinas-hidr%C3%A1ulicas)
+
+
**References** Hydraulic Turbine :
+
[<u>\[1\]</u>](https://en.wikipedia.org/wiki/Water_turbine)
+
[<u>\[2\]</u>](https://pt.wikipedia.org/wiki/Turbina_hidr%C3%A1ulica)
+
+
\[3\] [<u>Tipos de
+
Turbina</u>](http://www.antonioguilherme.web.br.com/Arquivos/turb_hidro.php)
+
+
\[4\] [<u>Vantagens e Desvantagens da Energia
+
Hidráulica</u>](http://www.envirothonpa.org/documents/19bHydropowerAdvantagesandDisadvantages.pdf)
+
+
\[5\] [<u>Tidal
+
turbines</u>](https://www.encyclopedie-energie.org/les-hydroliennes/)
+
+
\[6\] [<u>Tidal Turbines
+
historic</u>](https://fr.wikipedia.org/wiki/Hydrolienne#Historique)
+
+
\[7\] [<u>Hydraulic in
+
Portugal</u>](https://en.wikipedia.org/wiki/List_of_hydroelectric_power_stations_in_Portugal)
+
+
> 8
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9